PROPAGATION OF TWO-DIMENSIONAL PLASTIC
WAVES IN A THICK PLATE

Yu. R. Lepik

A study is made of the propagation and interaction of two-dimensional waves of high ampli-
fude in a thick plate. A monotonically decreasing pressure is applied to the surface of the
plate, Deformations are assumed to be large; the problem is formulated and solved in
Lagrangian variables. An approximate method for constructing the fronts of the shock
waves is proposed, The pressure and particle velocity at an arbitrary point and at an
arbitrary instant of time are determined by the method of characteristics. A numerical
example is given.

1. We consider an infinite plate with the free surfaces x = 0 and x = h (x is a Lagrangian coordinate
of the medium). At the surface x = 0 we assume that a dynamic compressive force, varying according to
the law ¢ = o f(t), is acting; the symbol f(t) denotes a monotonically decreasing function with f(0) = 1.
The stress-deformation dependence is approximated with the aid of the formulas (Fig. 1)

!
1T

5&1)( e>k-§-M for >0, g=FEe for <5,

(1.1)

Here L, M, and k are characteristic constants for the given material, and the quantity E, is calcu-
lated from the formula

E=20r( 2 \'ym (1.2)
17, [ 1—e, ) + ] :
The slope of the tangent at the point A is obtained from the formula
Ey—[%) 1.3
2 (de)e—_—eA - (1~—€A)}t+l ( }

We assume that the pressure applied to the plate is sufficiently high so that loading and unloading of
the material can be assumed to take place along a single path (hydrodynamic model of the medium). We
neglect any effect of the temperature and also of the deformation rate on the mechanical parameters of the
material,

2. The equations of motion in the Lagrangian coordinates x, t have the form (v is particle speed, p
is material density, and p, is the density of the undeformed state)

v ., ¥ dp g 1
Pogr +97 =0 5+ oram=0 (2.1)
This system has the characteristics dx = +a(e)dt, where the Lagrangian wave speed afe) is given by
the formulas
VE oo Cfor o<(o,

a(e) = ViLipo(t — &) ) for s>5, (2.2)
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If ¢ > o, the conditions on the characteristics have the form
v + K (1 —_ e)‘/»(lfk) = Ri for dr=a (3) dt (K B 9 <kL )‘h) 9.3
v—K({1 — 8)1/2(1_4:) =R, for dz=—a (e) dt S k—1\p 2.3)

At the wave fronts the jump conditions are satisfied, i.e.,

(vl =alel, [0l = palvl (2.4)

For the case under consideration regions on the xt-plane appear,
distributed as shown schematically in Fig. 2.

Two shock waves appear: one shock wave arises during loading of
the material owing to the concavity of the portion AB in the diagram of
Fig. 1; since E, < Ey, yet another shock wave arises during unloading of
the material (upon passing through the point A of Fig. 1). The fronts of
these shock waves are shown in Fig. 2 as the curves 0BC and AC. Calcu-
lations show that in many cases the quantities v and e change very little
along the positive characteristics. An approximate method for construct-
ing the shock front may be based on this fact whereby the quantities v and
e are assumed to be constant along the positive characteristics. We re-
mark that such a method was in essence applied in [1] by Lyakhov and
Polyakova. In another paper we shall present a more precise method for
constructing the shock front, one in which an estimate is given of the pre-
cision attained by the approximate method.

We now determine the shock front according to the following scheme:
If the quantities v and e are constant along the positive characteristics,
then these characteristics are straight lines. In the case considered here,
the function e = e(t) is given on the axis x = 0, We choose a sufficiently
small time interval At and plot on the axis x = 0 the points My = nAt,
wheren=1, 2, 3, ... (Fig. 3); through these points we draw the charac-
teristics x = a(e)t + C in the positive direction. If the shock wave passes
through the point M and its initial speed a,, is known, we can construct
the initial portion MD, of the shock wave according to the formula x =
Qxg (t - tM) .

At the point Dy the jump conditions (2.4) have the form

+

L —v, " =a, (ept—ep) (2.5)
The plus and minus superscripts refer to values of quantities after
and before passage of the shock front, respectively, and a4 is the shock

wave speed at the point D;.

- - 2 _ -
cDx GD; - poa*l (eD eDl, )5 le

Since we regard the values eD1—’ VDi_’ 0D1— as known, and since, in
addition, we have

_— b —
vD:+ - le’ ép,” = éM,

we can then determine the quantities v . and ax*; from the system (2.6).
With slope e,y we draw the next portion of the shock wave up to its inter-
section with the characteristic MyN, at the point D, and we repeat the

computations indicated above. All portions of the shock curve may be constructed in this way. We remark
that with the present method the conditions (2.3) are not satisfied on the negative characteristics. This
latter circumstance makes it possible to verify the precision attained with the approximate solution. To do

this, we construct several negative characteristics M;Cy, M,C,, . .

., then find the values of v and e at the

points of intersection with the positive characteristics, and then check to see how much they deviate from

the conditions (2.3).
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To apply the method of constructing the shock front out-
lined above, the slope @  , of the initial portion of the wave must
be known. For a loading wave this quantity may be readily found;
as is evident from Fig. 2, near the point O ¢~ =v™ =0, ot = T o

and in accord with the jump conditions (2.4) we have

Ao = V%/Poeo (2.6)

Determination of the quantity ¢« for an unloading wave is
more involved, since here the quantities ¢~ and v~ are not known.
To solve this problem we recommend the following scheme:

We choose a small quantity Ac and replace the curve ¢ =
o (t) of the diagram close to the point ¢ = g A by a step-curve
(Fig. 4), the height of each step being Ao . In the xt plane there
now appear regions 1, 2, 3 in which the parameters ¢ and v have
constant values (Fig. 4), where 6 =6 A *AC, 0, =0A, 03 = 0CA —
Ao.

The front 1-2 has the slope @ =alg =gp +Ac, and the
front 2-3 has the slope a; = vE;/p,. Since a; > a, both waves
meet at the point F. This collision gives rise to a refracted wave

1-4 and a reflected wave 3-4. The parameters ¢ and v are constant also in the region 4, Apparently,
04 < 0, since otherwise the shock front 1-4 would not have arisen. Since o3 < o p, the front between the

regions 3-4 propagates at the speed a,.

We now deduce formulas for determining the particle speed in the regions 1-4, the stress ¢, and the
speed of the shock front 1-4. To do this we write out the jump conditions at the wave fronts ( ax g is the

speed of the shock wave 1-4)

v — v = a (e — &)

vy — vy = ay (65 — &)
Vg — vy = — a; (e, — ey) 2.7
Uy — Uy = Gy (€4 — &)

04 — O3 = Polyo® (4 — &)

On the basis of the relations (1.1) and (1.3) we have

We also introduce the notation

The system (2.7) now acquires the form

Uy — U3

Vg— Uy = —a

de As S As
31z3A+<—dg> . AG:eA—I_'ET:\E?—_'_E—z
. G=0 4 \
Sy Gy —As s
€y = €4 == B ! €3 = A * 64:F41— (2.8)
= Ja—ss
® = = (2.9)
As As
B BT T T hys
1—x /1 %
i As, vy—vi=— Ry \“ET -+ Tl-) As (2.10)
E1Es (1 4 %)
% __
Dol = Ey -+ Eqx (211)

For a sufficiently small step Ac we can assume that a ~ VE,/py; if now we add the first three of
Egs. (2.10) and subtract the last one, we obtain
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e+ 2 —as Voo + ) = 0 (2.12)

From Eds. (2.11), (2.12) we determine the quantities w and a«,. If, in addition, we introduce for con-
ciseness the notation y = E,/E,, we find that

- A1+ VD) 2.13

T T Vit (2.13)
~_ VEld+3Vy 14
a’-“”/p"—iﬁfwzx (219

Formula (2.14) determines the slope of the initial portion of the shock wave which arises with unload-
ing of the material.

We now proceed to a determination of the parameters ¢ and v in the regions of Fig, 2. In those por-
tions of the shock wave of loading, where o™ > op (the portion OB of Fig. 2; ¢ is the stress at the point B
of Fig. 1), the passage into the region 2 proceeds directly from the quiescent region 0. If, however, o+ <
op, then between the regions 0 and 2 there must, in addition, be a region 1 where the parameters have con-
stant values, namely,

Oy =04, Ul=‘ :;:1 (2.15)

The straight line 0-1 is a strong discontinuity curve, its inclination to the t axis being a; = «/E17p0.
The front 0-2 is a shock front. At point B of Fig. 2, where ¢ = o'g, 2 branching of the fronts takes place.
If initially the stress ¢ is less than op (i.e., oy < oB), the point B coincides with point O and the branching
of the fronts occurs at the origin. In region 2, where o > o A, the characteristics are not straight lines,
thereby complicating the determination of the parameters in regions 2 and 3. The calculations are simpli-
fied significantly if the assumption is made that in regions 2 and 3 the quantities ¢ and v are constant along
the positive characteristics.

The wave 0~-1 reflects from the wall x = h and a region 4 appears, where

25,
Og = 0, Uy = -f-"-l;(;l— (2 .16)
As a result of the interaction of the waves 1-4 and 1-2, two new waves appear at the point E, where
the refracted wave 4-5 is a curve of strong discontinuity and the reflected wave 2-5 is a shock wave. In
subsequent interactions there appear the additional regions 6-9. Only in region 2 do we have 0, > 0, in
all the remaining regions the stress is less than g A.

Constancy of the quantities ¢ and v is assumed only for the region 2. In the regions 3, 5-9 values of
these quantities are easily determined by the method of characteristics. As for region 3, we injtially de-
termine the values of v in the triangular region ACD and then subsequently for the remaining part of re-
gion 3.

To illustrate the method we determine the quantities e and v for the points P, Q, and R of Fig. 2, as-
suming, moreover, that the shock wave AC has already been constructed and that the values of e and v have
also been found in the region ACD. Through the points P and Q we draw the positive and negative charac-
teristics; they are straight lines with slopes +a, =+ «/E17 py- For these characteristics the following condi-
tions must be satisfied:

Vot aey= v, aep

Vo — @8y =Up — 0y (2.17)

Vp — hep = Vg — Gy&g

Since the parameters in the region ACD have already been determined, the quantities v, €7, Vg,
and eg are known, In addition, ep is known from the loading schedule ¢ = ¢ (t) on the surface x = 0, Con-
sequently, from the system (2.17) we may determine the unknown quantities vp, vQ» and eq. We now pro-
ceed to the point R, We shall interpret the jump curve 4-7 as a double characteristic., The conditions for
the characteristics now have the form
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TABLE 1 TABLE 2

x 40~ a,+10~¢ o—-10-5 o+.10-8 x ‘t.40~8 a,-10-6 o+-10-5
0 0.743 | 0.4708 1.650 1.650 0 Q 0.5004 3
0.309 1,398 | 0.4870 1.708 1.527 0.572 1.450 | 0.4904 | 2.768
0.510 1.814 | 0.4850 1.745 1.468 0.924 1.867 | 0.4855 2658
(.866 2.946 | 0.4845 1.806 1.368 1.427 2,903 | 0.4808 2.554
1.300 { 3.441 | 0.4890 1.854 1.253 1.784 3.638 | 0.4780 2.493
1.644 4,084 | 0.4901 1.881 1,184 2.286 4,687 | 0.4752 2.433
2.017 4,909 | 0.4914 1.911 1,096 3.018 6.226 | 0.4716 2.356
2,489 1 5.869 | 0.4926 1.942 1,007 3.622 7.506 | 0.4694 2.309
3.085 7.079 | 0.4939 1.974 0,907 4,329 8.998 | 0.4672 2.263
3.816 8.558 | 0.4950 2.006 0.801 4.736 9.885 | 0.4651 2.218
4,859 | 10.665 | 0.4983 2.038 0.673 6,237 | 13.143 | 0.4630 2,174
6,246 | 13,460 | 0.4975 2.072 0.538 7.225 | 15.226 | 0.4612 2,439 -
8.479 | 17.345 | 0.4086 2.1405 0.396 8.677 | 18.334 | 0.4595 2.105

TABLE 3
5-10-% »-30-5
Points
- + - +
a 0.3326 0.0525
b 0.3266 0.4131 0.0540 . 0.0315
¢ 0.4131 —1.1744 0.0315  0,4459
d A, 1744 —0.0087 0.4459  (.1416
e 0.3771 0.4247 0.0672  0,0337
g 0.4217 —1.1657 00337 0.4481
7 -1.4687 0 0.4481  0.1438

vyt ae == vy -+ a,e,
v,

R—aleR =V, —ace

[} 1°C
oy — aleR“ == vc* — alec"' (2.18)
Moreover, it will also be necessary to satisfy the jump condition
Vi —vg = (eg" —ep) (2.19)

From Eqgs. {2.18), (2.19) we determine the quantities VR-, \?R“L, eR”, eR+. If the deformations eQ,
eRr > eg' are already known, the corresponding stress can be determined on the basis of the o —e diagram,

In this way the values of o, e, and v can be found for an arbitrary point of the diagram of Fig. 2.

We remark that the distribution of regions shown in Fig. 2 is not the only one possible. If the plate
is sufficiently thick, the shock front of loading may intersect the shock front of unloading even before the
boundary x = h is reached, We take up the consideration of this case in an example, which we solve in Sec—
tion 3,

3. Consider a plate of thickness h = 15 cm. The stress applied to its surface x = Q varies according
to the law

o = 300000 exp (—0.805-108 ¢) .

For the values of the material parameters L, M, k, and o 5 we take

L = 1425408, M = — 67.1.10%, ¢4 = 165 000 bar, k= 6

Before proceeding to a solution of the problem we determine the quantity op {cf. Fig. 1). Upon mak-
ing the computations we find that o = 3.28 - 10° bar. Since in this case ¢ < ¢, the region 1 of Fig. 2 is
already present at the initial instant t = 0, Next we construct the fronts of the shock waves 1-2 and 2-3
(Fig. 5), the initial slope of the front 2-3 being calculated from formula (2.14): a %0 = 0.4708 - 10° cm /sec,
The computational results are presented in Tables 1 and 2, the data in Table 1 corresponding to the front
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1~2 and that in Table 2 to the front 2-3, In these tables x and t are coordinates of a point of the shock front,
ax is the wave speed at the point, oF are the stresses on the negative and positive sides of the front (for
the front 1-2 we have ¢~ = 1.65 - 10° bar.

The disposition of the fronts and the regions in the xt plane are shown in Fig. 5, As is evident from
Fig. 5, the region 2, where ¢ > ¢ A, is very small; in all the remaining regions we have ¢ < oA and, con-
seduently, the characteristics have the constant slopes + a; = £0.5516 - 10® - /sec. In order to study the
variation of the parameters in the various regions, we also carried through calculations for the points
a, b, c,d, e, f, g shown in Fig, 5; the data for these points is given in Table 3, The points e~f are regarded
as lymg on the positive side of the fronts 1-4 and 5-6; the plus and minus signs in Table 3 indicate on which
side of the fronts 3-4, 4-6, or 6-7 the corresponding point lies.

One can draw the following conclusions from the data of Table 3:

1) On the intervals b-c¢, ¢-d, e-g, g-f of a positive characteristic the parameters ¢ and v show
negligible variation; this situation holds only for the initial portion a-b.

2) The phenomenon of spall takes place at point g, the thickness of the spall that flies off being about
0.5 cm.

3) I the inequality xo < h is satisfied (xe i8 the coordinate of point e), then when spall occurs the
spall thickness is independent of the general plate thickness h.
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